이자 분할을 위한 노이즈 제거 알고리즘 기반 기존 임계값 기법 대비 U-Net 모델의 대체 가능성
Substitutability of Noise Reduction Algorithm based Conventional Thresholding Technique to U-Net Model for Pancreas Segmentation
- 한국방사선학회
- 한국방사선학회 논문지
- 제17권 제5호
-
2023.10663 - 670 (8 pages)
-
DOI : 10.7742/jksr.2023.17.5.663
- 30
본 연구에서는 기존의 노이즈 제거 알고리즘을 적용한 영역 확장 기반의 분할 방법과 U-Net을 이용한 분할 방법의 성능을 정량적 평가인자를 이용하여 비교평가 하고자 하였다. 먼저, 전산화단층검사 영상에 median filter, median modified Wiener filter, fast non-local means algorithm을 모델링하여 적용한 뒤 영역 확장 기반의 분할을 수행하였다. 그리고 U-Net 기반의 분할 모델로 훈련을 진행하여 분할을 수행하였다. 그 후, 노이즈 제거 알고리즘을 사용한 경우와 U-Net을 사용한 경우의 분할 성능을 비교 평가하기 위해 평균 제곱근 편차 (root mean square error, RMSE), 최대 신호 대 잡음비 (peak signal to noise ratio, PSNR), universal quality image index (UQI), 그리고 dice similarity coefficient (DSC)를 측정하였다. 실험 결과, U-Net을 이용하여 분할을 수행했을 때 분할 성능이 가장 향상되었다. RMSE, PSNR, UQI, 그리고 DSC 값은 각각 약 0.063, 72.11, 0.864, 그리고 0.982로 noisy한 영상에 비해 각각 1.97배, 1.09배, 5.30배, 그리고 1.99배 개선된 것을 확인할 수 있었다. 결론적으로, 전산화단층검사영상에서 U-Net이 노이즈 제거 알고리즘에 비해 분할 성능 향상에 효과적임을 입증하였다.
In this study, we aimed to perform a comparative evaluation using quantitative factors between a region-growing based segmentation with noise reduction algorithms and a U-Net based segmentation. Initially, we applied median filter, median modified Wiener filter, and fast non-local means algorithm to computed tomography (CT) images, followed by region-growing based segmentation. Additionally, we trained a U-Net based segmentation model to perform segmentation. Subsequently, to compare and evaluate the segmentation performance of cases with noise reduction algorithms and cases with U-Net, we measured root mean square error (RMSE) and peak signal to noise ratio (PSNR), universal quality image index (UQI), and dice similarity coefficient (DSC). The results showed that using U-Net for segmentation yielded the most improved performance. The values of RMSE, PSNR, UQI, and DSC were measured as 0.063, 72.11, 0.841, and 0.982 respectively, which indicated improvements of 1.97, 1.09, 5.30, and 1.99 times compared to noisy images. In conclusion, U-Net proved to be effective in enhancing segmentation performance compared to noise reduction algorithms in CT images.
Ⅰ. INTRODUCTION
Ⅱ. MATERIAL AND METHODS
Ⅲ. RESULT & DISCUSSION
Ⅳ. CONCLUSION
Reference
(0)
(0)