본 연구는 임플란트 시술한 환자에 대한 두경부 CT 영상을 4개의 알고리즘(Standard, Soft, Bone, Detail)을 재구성하여 Noise, SNR, CNR 측정값을 정량적으로 분석한 후 최적의 알고리즘을 알아보고자 하였다. 분석방법으로는 Image J 프로그램을 이용하여 재구성한 영상에 관심영역(Region of interest)을 통하여 픽셀값을 계산하였다. Noise, SNR, CNR은 측정부위를 영상에서 인두, 깨물근, 귀밑샘이 있는 지점에 관심영역을 측정하고 mean값과 SD값을 구하였다. SNR과 CNR의 값은 주어진 식에 의거하여 산출하였다. 결과적으로 Standard 알고리즘에서 노이즈는 가장 낮게 나타났으며 SNR 또한 가장 높게 나타났다. CNR은 Soft 알고리즘에서 가장 높게 나타났으나 Standard 알고리즘과는 별 차이가 없는 것으로 나타났다. 따라서 두경부 CT검사에서 구강내 임플란트 착용한 환자 검사에서 Standard 알고리즘이 최적의 알고리즘이라고 사료되며 이 연구의 자료가 두경부 CT검사에서 영상 평가하는데 기초자료로 사용되기를 바라며 다양한 알고리즘 변화로 영상의 질을 더 높일 수 있는 계기가 될 것으로 판단된다.
This study attempted to determine the optimal algorithm after quantitatively analyzing noise, SNR, and CNR measurements by reconstructing four algorithms (Standard, Soft, Bone, and Detail) from head and neck CT images of patients who underwent implant surgery. As an analysis method, pixel values were calculated through the region of interest in the reconstructed image using the Image J program. For noise, SNR, and CNR, the region of interest was measured at the location of the pharynx, masseter muscle, and parotid gland in the image, and the mean and SD values were obtained. The values of SNR and CNR were calculated based on the given formula. As a result, the standard algorithm showed the lowest noise and the highest SNR. CNR was highest in the Soft algorithm, but showed no significant difference from the Standard algorithm. Therefore, it is believed that the Standard algorithm is the optimal algorithm for examining patients wearing intraoral implants in head and neck CT examinations. We hope that the data from this study will be used as basic data for image evaluation in head and neck CT examinations, and that the quality of images will be further improved through various algorithm changes. It is believed that this will be an opportunity to do so.
Ⅰ. INTRODUCTION
Ⅱ. MATERIAL AND METHODS
Ⅲ. RESULT
Ⅳ. DISCUSSION
Ⅴ. CONCLUSION
Reference