인공 지능을 이용한 흉부 엑스레이 이미지에서의 이물질 검출
Detecting Foreign Objects in Chest X-Ray Images using Artificial Intelligence
- 한국방사선학회
- 한국방사선학회 논문지
- 제17권 제6호
-
2023.11873 - 879 (7 pages)
-
DOI : 10.7742/jksr.2023.17.6.873
- 25

본 연구는 인공지능(AI)을 사용하여 흉부 엑스레이 이미지에서 이물질을 탐지하는 방법을 탐구하였다. 의료영상학, 특히 흉부 엑스레이는 폐렴이나 폐암과 같은 질병을 진단하는 데 매우 중요한 역할을 한다. 영상의학 검사가 증가함에 따라 AI는 효율적이고 빠른 진단을 위한 중요한 도구가 되었다. 하지만 이미지에는 단추나 브래지어 와이어와 같은 일상적인 장신구를 포함한 이물질이 포함될 수 있어 정확한 판독을 방해할 수 있다. 본 연구에서는 이러한 이물질을 정확하게 식별하는 AI 알고리즘을 개발하였고, 미국 국립보건원 흉부 엑스레이 데이터셋을 가공하여 YOLOv8 모델을 기반으로 처리하였다. 그 결과 정확도, 정밀도, 리콜, F1-score가 모두 0.91에 가까울 정도로 높은 탐지 성능을 보였다. 이번 연구는 AI의 뛰어난 성능에도 불구하고 이미지 내 이물질로 인해 판독 결과가 왜곡될 수 있는 문제점을 해결함으로써 영상의학 분야에서 AI의 혁신적인 역할과 함께, 임상 구현에 필수적인 정확성에 기반하여 신뢰성을 강조하였다.
This study explored the use of artificial intelligence(AI) to detect foreign bodies in chest X-ray images. Medical imaging, especially chest X-rays, plays a crucial role in diagnosing diseases such as pneumonia and lung cancer. With the increase in imaging tests, AI has become an important tool for efficient and fast diagnosis. However, images can contain foreign objects, including everyday jewelry like buttons and bra wires, which can interfere with accurate readings. In this study, we developed an AI algorithm that accurately identifies these foreign objects and processed the National Institutes of Health chest X-ray dataset based on the YOLOv8 model. The results showed high detection performance with accuracy, precision, recall, and F1-score all close to 0.91. Despite the excellent performance of AI, the study solved the problem that foreign objects in the image can distort the reading results, emphasizing the innovative role of AI in radiology and its reliability based on accuracy, which is essential for clinical implementation.
Ⅰ. INTRODUCTION
Ⅱ. MATERIAL AND METHODS
Ⅲ. RESULT
Ⅳ. DISCUSSION
Ⅴ. CONCLUSION
Reference
(0)
(0)