상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
한국작물학회지 제68권 제4호.jpg
KCI등재 학술저널

질소비료 시비 수준이 벼의 수량 및 수량구성요소에 미치는 영향

Effects of Nitrogen Application Levels on Grain Yield and Yield-related Traits of Rice Genetic Resources

DOI : 10.7740/kjcs.2023.68.4.276
  • 21

질소비료 감비시 수량 감소의 요인과 관련 특성 개량 및유전자탐색을 위한 유전자원을 제시하기 위해 153개 벼유전자원에 대한 수량 및 수량구성요소의 변이를 분석한 결과는 다음과 같다. 1. 공시된 유전자원은 질소비료 시비 수준이 9 kg/10a에서4.5 kg/10a로 감소하였을 때 수량, 수량구성요소 및 주요농업형질은 유의한 차이를 나타내었으며, 이중 DTH, CL, PL, GYP, NPP 및 NSP는 1.8~17.9% 감소하였고나머지 TGW, PRG는 2.6~11.2% 증가하였다. 2. 이원분산분석결과 GYP 및 수량구성요소인 NPP, PRG 는 질소비료 시비 수준에 따른 유의성을 보였으나 수량구성요소인 NSP와 TGW는 유의성이 없었다. 3. NN조건에서 NPP는 NSP (-0.44), TGW (-0.49)와 음의상관관계를 보였고 TGW는 PRG (-0.34)와 음의 상관관계를 나타내었다. 이와는 반대로 GYP는 PRG (0.37)와NSP (0.38)간에 양의 상관관계를 나타내었다. LN조건에서도 유사한 양상을 나타내었으나 NPP와 PRG (0.32) 간에 양의 상관관계가 추가되었다. 4. 질소비료 감비시 수량 감소의 요인을 분석한 결과 LN조건에서 PA1은 NPP, TGW, PRG 가 높은 요인부하량을보였는데 NPP의 감소는 TGW를 증가시키고 PRG는 감소시켰다. PA2에서는 NSP와 GYP가 높은 요인부하량을 보였고, NSP의 증가가 GYP를 증가시켰다. 5. 질소비료 감비시 NPP가 가장 높고 감소율은 가장 낮은 인디카형 중에서 NPP 또는 NSP가 높은 CHIEM CHANK 외 7개 유전자원을 선발하였다. 6. 이 결과를 바탕으로 질소비료 감비시 수량이 감소하는가장 큰 요인은 NPP와 NSP의 감소였는데 그 결과 수수형 또는 수중형인 질소비료 감비 적응 품종 육성을 통해수량성을 유지시킬 수 있을 것으로 판단된다. 또한 선발된 CHIEM CHANK 외 7개 유전자원들은 질소비료 감비 적응 관련 특성 개량 및 유전자탐색을 위한 육종소재로서 이용될 수 있을 것이다.

Nitrogen is a major and essential macronutrient for plant growth and development. However, excessive nitrogen application can lead to ecological pollution or greenhouse gas emissions, consequently resulting in climate change. In this study, we used 153 genetic resources of rice to evaluate the effects of the levels of nitrogen application on grain yield and yield-related traits. Significant differences were noted in the yield and yield-related traits of genetic resources between two nitrogen application levels, namely, 4.5 kg/10a (NN: normal nitrogen condition) and 9.0 kg/10a (LN: low-nitrogen condition). Among the tested traits, days to heading (DTH), clum length (CL), grain yield per plant (GYP), number of panicles per plant (NPP), and number of spikelets per panicle (NSP) decreased by 1.8 to 17.9% when the nitrogen application levels decreased from NN to LN. The 1,000-grain weight (TWG) and percentage of ripened grain (PRG) increased by 2.6 to 11.2% under these conditions. Based on nitrogen application levels, two-way analysis of variance (ANOVA) demonstrated significant differences in GYP, NPP, and PRG but not in NSP and TGW. NPP exhibited negative correlations with NSP (‑0.44) and TGW (‑0.44), and TGW displayed a negative correlation with PRG (‑0.34), whereas, GYP exhibited a positive correlation with PRG (0.37) and NSP (0.38). A similar pattern was recorded under the LN condition. NPP, TGW, and PRG were clustered as PA (principle axis) 1 under the LN condition by factor analysis. NSP and GYP were clustered as PA (principle axis) 2. These results demonstrated NPP and NSP as the primary factors contributing to the decrease in grain yield under LN conditions. In conclusion, we selected eight genetic resources that exhibited higher GYP under both NN and LN conditions with higher NPP or NSP. These genetic resources can be considered valuable breeding materials for the adaptation of plants to nitrogen deficiency.

재료 및 방법

결과 및 고찰

적 요

사 사

인용문헌(REFERENCES)

로딩중