상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
한국전자통신학회 논문지 제18권 제6호.jpg
KCI등재 학술저널

근적외선 분광법 기반 비침습식 혈당 수치 추정 알고리즘 연구

혈당 수치를 확인하기 위해 사용하는 채혈식 혈당 측정기의 불편함을 해소하기 위한 다양한 방법이 시도되고 있다. 본 논문에서는 근적외선 센서를 이용하여 획득한 스펙트럼 데이터로부터 머신러닝 기술을 사용하여 비침습적으로 혈당 수치를 추정하고자 하였다. 연구에 사용한 비침습식 혈당측정기는 가시광선을 포함하여 총 6개로 구성된 근적외선 발광부와 이를 수신하는 수광부를 가지는데, 손가락과 같은 인체의 특정 부위에 대한 스펙트럼 데이터를 수집하기 위해 만든 기기이다. 혈당 수치에 따라 유의미한 차이가 있는지를 검증하기 위해 머신 러닝 알고리즘들을 통해 혈당 수치 추정을 시도하였다. 수집한 데이터에 5가지 머신 러닝 알고리즘 기법을 적용하면서 다양한 하이퍼 파라미터를 조정한 결과, 서포트 벡터 회귀 알고리즘이 가장 좋은 성능을 나타냄을 확인하였다.

Various methods are being attempted to resolve the inconvenience of blood glucose meters used to check blood sugar levels. In this paper, we attempted to estimate blood sugar levels non-invasively using machine learning technology from spectral data acquired using a near-infrared sensor. The non-invasive blood glucose meter used in the study has a total of six near-infrared ray emitters, including visible rays, and a light receiver that receives them. It is a device created to collect spectral data on specific parts of the human body, such as the fingers. To verify whether there was a significant difference depending on blood sugar level, we attempted to estimate blood sugar level through machine learning algorithms. As a result of applying five machine learning algorithm techniques to the collected data and adjusting various hyper parameters, it was confirmed that the support vector regression algorithm showed the best performance.

Ⅰ. 개 요

Ⅱ. 데이터 수집 및 전처리

Ⅲ. 실험 혈당 수치 추정을 위한 알고리즘 적용

Ⅳ. 결론 및 향후 연구

References

로딩중