상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
학술저널

소프트 보팅을 이용한 합성곱 오토인코더 기반 스트레스 탐지

Convolutional Autoencoder based Stress Detection using Soft Voting

  • 34
스마트미디어저널 Vol12, No.11.jpg

스트레스는 감당하기 어려운 외부 또는 내부 요인으로부터 유발되는 것으로 현대 사회의 주요한 문제 중 하나이다. 높은 스트레스가 장기적으로 지속되면 만성적으로 발전할 수 있으며, 건강 및 생활 전반에 큰 악영향을 초래할 수 있다. 그러나 만성적인 스트레스를 겪는 사람들은 자신이 스트레스를 받고 있는지 알아차리기 어렵기 때문에 사전에 스트레스를 인지하고 관리하는 것이 중요하다. 웨어러블 기기로부터 측정된 생체 신호를 이용하여 스트레스를 탐지한다면, 스트레스를 효율적으로 관리할 수 있을 것이다. 그러나 생체 신호를 이용하는 데에는 두 가지 문제점이 있다. 첫째로 생체 신호에서 수작업 특징을 추출하는 것은 바이어스를 발생시킬 수 있으며, 두 번째는 실험 주체에 따라 분류 모델 성능의 변이가 클 수 있다는 것이다. 본 논문에서는 데이터의 핵심적인 특징을 표현할 수 있는 합성곱 오토인코더를 이용해 바이어스를 줄이고 앙상블 학습 중 하나인 소프트 보팅을 이용해 일반화 능력을 높여 성능의 변이를 줄이는 모델을 제안한다. 모델의 일반화 성능을 확인하기 위하여 LOSO 교차 검증 방법을 이용하여 성능을 평가한다. 본 논문에서 제안한 모델은 WESAD 데이터셋을 이용하여 높은 성능을 보여주었던 기존의 연구들보다 우수한 정확도를 보임을 확인하였다.

Stress is a significant issue in modern society, often triggered by external or internal factors that are difficult to manage. When high stress persists over a long term, it can develop into a chronic condition, negatively impacting health and overall well-being. However, it is challenging for individuals experiencing chronic stress to recognize their condition, making early detection and management crucial. Using biosignals measured from wearable devices to detect stress could lead to more effective management. However, there are two main problems with using biosignals: first, manually extracting features from these signals can introduce bias, and second, the performance of classification models can vary greatly depending on the subject of the experiment. This paper proposes a model that reduces bias using convo utional autoencoders, which can represent the key features of data, and enhances generalizability by employing soft voting, a method of ensemble learning, to minimize performance variability. To verify the generalization performance of the model, we evaluate it using LOSO cross-validation method. The model proposed in this paper has demonstrated superior accuracy compared to previous studies using the WESAD dataset.

Ⅰ. 서론

Ⅱ. 관련 연구

Ⅲ. 스트레스 탐지 모델

Ⅳ. 실험 및 결과

Ⅴ. 결론

REFERENCES

(0)

(0)

로딩중