상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
스마트미디어저널 Vol12, No.11.jpg
KCI등재후보 학술저널

충전 특성과 어텐션 기반 LSTM을 활용한 개선된 리튬이온 배터리 SOH 예측 모델

최근 리튬이온 배터리 사용이 늘어남에 따라 배터리 화재 및 사고 예방의 필요성이 대두되고 있다. 사고 예방을 위해서는 배터리 SOH(State of Health)를 예측하여 열화가 많이 진행된 배터리의 교체 시기를 확인하는 것이 필요하다. 본 논문에서는 배터리의 충전 과정에서 얻을 수 있는 최대 전압 도달 시간, 전류 변화 시간, 최대 온도 도달 시간, IC(Incremental Capacity) 등 4가지 배터리 열화 특성과 어텐션 메커니즘을 이용한 장단기 메모리(Long Short Term Memory, LSTM)를 사용하여 배터리의 열화 상태를 예측하는 모델을 제안한다. NASA에서 제공하는 배터리 데이터 세트를 사용해 제안하는 모델의 성능을 측정한 결과 일반적인 LSTM 모델을 사용하는 경우보다 예측성능의 개선을 확인할 수 있었고, 특히 배터리 교체 주기에 가까운 SOH 90-70% 구간에서 더 우수한 성능을 보였다.

Recently, the need to prevent battery fires and accidents has emerged, as the use of lithium-ion batteries has increased. In order to prevent accidents, it is necessary to predict the state of health (SOH) and check the replacement timing of the battery with a lot of degradation. This paper proposes a model for predicting the degradation state of a battery by using four battery degradation indicators: maximum voltage arrival time, current change time, maximum temperature arrival time, and incremental capacity (IC) that can be obtained in the battery charging process, and LSTM using an attention mechanism. The performance of the proposed model was measured using the NASA battery data set, and the predictive performance was improved compared to that of the general LSTM model, especially in the SOH 90-70% section, which is close to the battery replacement cycle.

Ⅰ. 서론

Ⅱ. 관련 연구

Ⅲ. 제안하는 방법

Ⅳ. 실험결과 및 분석

Ⅴ. 결론

REFERENCES

로딩중