텍스트 마이닝과 네트워크 이론을 활용한 권역별 국가하천 점용허가 키워드 분석
Analysis of Keywords in national river occupancy permits by region using text mining and network theory
- 한국스마트미디어학회
- 스마트미디어저널
- Vol12, No.11
- 2023.12
- 185 - 197 (13 pages)
점용허가 정보를 기록하는 단순 용도로만 사용되고 있는 허가 대장에서 허가 내용에 내재한 점용 신청과 허가업무 수행에 유용한 정보를 추출하기 위해 텍스트 마이닝과 네트워크 이론을 활용하여 본 연구를 진행하였다. 텍스트 마이닝 기반으로 불용어 제거와 형태소 분석 등 정규화 과정을 비롯하여 서울·경기, 경상, 전라, 충청, 강원 등 5개 권역별로 어휘 출현 빈도와 토픽 모델링을 분석, 비교하였다. 네트워크 이론에 가정 많이 사용되는 단계, 근접, 매개 및 고유벡터 등 4종의 중심성 알고리즘을 적용하여 네트워크에서 중심적인 위치에 있거나 중간 매개체 역할을 하는 키워드를 살펴보았다. 이러한 어휘 출현 빈도, 토픽 모델링 및 네트워크 중심성을 종합적으로 분석하여 모든 권역에서 ‘설치’ 키워드가 가장 영향력이 큰 것을 알 수 있었다. 이는 환경부의 허가관리청에서는 시설물을 건설하거나 공작물을 설치하는 허가가 많아서 나타난 결과라고 판단된다. 또한, 도로 시설, 치수 시설, 지하 매설 시설, 전력·통신 시설, 체육·공원 시설 등과 연관된 키워드가 토픽 모델링과 네트워크에서 중심적 위치에 있거나 중간 매개체의 역할을 하는 것을 알 수 있었다. 키워드 대부분은 출현 빈도와 분포 비율이 낮은 짚프의 원칙(Zipf’ Law)의 통계분포 형태를 보이는 것으로 보였다.
This study was conducted using text mining and network theory to extract useful information for application for occupancy and performance of permit tasks contained in the permit contents from the permit register, which is used only for the simple purpose of recording occupancy permit information. Based on text mining, we analyzed and compared the frequency of vocabulary occurrence and topic modeling in five regions, including Seoul, Gyeonggi, Gyeongsang, Jeolla, Chungcheong, and Gangwon, as well as normalization processes such as stopword removal and morpheme analysis. By applying four types of centrality algorithms, including stage, proximity, mediation, and eigenvector, which are widely used in network theory, we looked at keywords that are in a central position or act as an intermediary in the network. Through a comprehensive analysis of vocabulary appearance frequency, topic modeling, and network centrality, it was found that the ‘installation’ keyword was the most influential in all regions. This is believed to be the result of the Ministry of Environment's permit management office issuing many permits for constructing facilities or installing structures. In addition, it was found that keywords related to road facilities, flood control facilities, underground facilities, power/communication facilities, sports/park facilities, etc. were at a central position or played a role as an intermediary in topic modeling and networks. Most of the keywords appeared to have a Zipf’s law statistical distribution with low frequency of occurrence and low distribution ratio.
Ⅰ. 서론
Ⅱ. 이론적 배경
Ⅲ. 선행 연구사례
Ⅳ. 분석 결과
Ⅴ. 결론
REFERENCES