Cluster tools are extensively employed in various wafer fabrication processes within the semiconductor manufacturing industry, including photo lithography, etching, and chemical vapor deposition. Contemporary fabrication facilities encounter customer orders with technical specifications that are similar yet slightly varied. Consequently, modern fabrications concurrently manufacture two or three different wafer types using a cluster tool to maximize chamber utilization and streamline the flow of wafer lots between different process stages. In this review, we introduce two methods of concurrent processing of multiple wafer types: 1) concurrent processing of multiple wafer types with different job flows, 2) concurrent processing of multiple wafer types with identical job flows. We describe relevant research trends and achievements and discuss future research directions.
1. 서 론
2. 본 론
3. 결 론
후 기
References