Causal Impact 분석 기법을 접목한 COVID-19 팬데믹 전·후 메타버스 애플리케이션 리뷰의 토픽 변화 분석
Analysis of Topic Changes in Metaverse Application Reviews Before and After the COVID-19 Pandemic Using Causal Impact Analysis Techniques
- 한국스마트미디어학회
- 스마트미디어저널
- Vol13, No.1
- 2024.01
- 36 - 44 (9 pages)
가상환경 기술의 발전과 COVID-19 팬데믹으로 언택트 문화가 부상함에 따라 메타버스(Metaverse)가 주목받고 있다. 본 연구에서는 최근 메타버스 서비스로 주목받는 “제페토” 애플리케이션에 대한 사용자들의 리뷰를 분석하여, COVID-19 팬데믹 이후 메타버스에 대한 요구사항의 변화를 확인하고자 하였다. 이를 위해 2018년 9월부터 2023년 3월까지 구글플레이스토어에 작성된 “제페토” 애플리케이션 리뷰 109,662건을 수집하였으며, LDA 토픽모델링 기법을 활용하여 토픽을 추출하고, COVID-19 팬데믹이 선언된 “2020년 3월 11일”을 기준으로 전·후로 토픽이 어떻게 변화했는지 Causal Impact 기법을 사용하여 분석하였다. 분석 결과 애플리케이션 기능적 문제(토픽1), 보안 문제(토픽2), 애플리케이션 내 가상화폐(Zem)에 대한 불만 사항(토픽3), 애플리케이션 성능(토픽4), 개인정보 관련 문제(토픽5) 등 5가지 토픽이 추출되었으며, 이들 중 보안 문제(토픽2)가 COVID-19 팬데믹에 가장 큰 영향을 받았음이 확인하였다.
Metaverse is attracting attention as the development of virtual environment technology and the emergence of untact culture due to the COVID-19 pandemic. In this study, by analyzing users’ reviews on the “Zepeto” application, which has recently attracted attention as a metaverse service, we tried to confirm changes in the requirements for the metaverse after the COVID-19 pandemic. To this end, 109,662 reviews of “Zepeto” applications written on the Google Play Store from September 2018 to March 2023 were collected, topics were extracted using LDA topic modeling technique, and topics were analyzed using the Causal Impact technique to examine how topics changed before and after based on “March 11, 2020” when the COVID-19 pandemic was declared. As a result of the analysis, five topics were extracted: application functional problems (topic1), security problems (topic 2), complaints about cryptocurrency (Zem) in the application (topic 3), application performance (topic 4), and personal information-related problems (topic 5). Among them, it was confirmed that security problems (topic 2) were most affected by the COVID-19 pandemic.
Ⅰ. 서론
Ⅱ. 이론적 배경
Ⅲ. 연구 방법
Ⅳ. 연구 결과
Ⅴ. 결론
REFERENCES