품질이 관리된 스트레스 측정용 데이터셋 구축을 위한 제언
Recommendations for the Construction of a Quality-Controlled Stress Measurement Dataset
- 한국스마트미디어학회
- 스마트미디어저널
- Vol13, No.2
-
2024.0244 - 51 (8 pages)
-
DOI : 10.30693/SMJ.2024.13.02.44
- 148

스트레스 측정용 데이터셋의 구축은 건강, 의료분야, 심리행동, 교육분야 등 현대의 다양한 응용 분야에서 핵심적인 역할을 수행하고 있다. 특히, 스트레스 측정용 인공지능 모델의 효율적인 훈련을 위해서는 다양한 편향성을 제거하고 품질 관리된 데이터셋을 구축하는 것이 중요하다. 본 논문에서는 다양한 편향성 제거를 통한 품질이 관리 된 스트레스 측정용 데이터셋 구축에 관하여 제안하였다. 이를 위해 스트레스 정의 및 측정도구 소개, 스트레스 인공지능 데이터 셋 구축과정, 품질향상을 위한 편향성 극복 전략 그리고 스트레스 데이터 수집시 고려사항을 제시하였다. 특히, 데이터셋 품질을 관리하기 위해 데이터셋 구축시 고려사항과, 발생할 수 있는 선택편향, 측정편향, 인과관계편향, 확증편향, 인공지능편향과 같은 다양한 편향성에 대해 검토하였다. 본 논문을 통해 스트레스 데이터 수집시 고려사항과 스트레스 데이터셋의 구축에서 발생할 수 있는 다양한 편향성을 체계적으로 이해하고, 이를 극복하여 품질이 보장된 데이터셋을 구축하는데 기여할 것으로 기대된다.
The construction of a stress measurement dataset plays a crucial role in various modern applications. In particular, for the efficient training of artificial intelligence models for stress measurement, it is essential to compare various biases and construct a quality-controlled dataset. In this paper, we propose the construction of a stress measurement dataset with quality management through the comparison of various biases. To achieve this, we introduce stress definitions and measurement tools, the process of building an artificial intelligence stress dataset, strategies to overcome biases for quality improvement, and considerations for stress data collection. Specifically, to manage dataset quality, we discuss various biases such as selection bias, measurement bias, causal bias, confirmation bias, and artificial intelligence bias that may arise during stress data collection. Through this paper, we aim to systematically understand considerations for stress data collection and various biases that may occur during the construction of a stress dataset, contributing to the construction of a dataset with guaranteed quality by overcoming these biases.
Ⅰ. 서론
Ⅱ. 관련연구
Ⅲ. 결론
(0)
(0)