거울 신경 체계 모델링을 위한 동적 환경에 강인한 실시간 자세추정
Robust Real-time Pose Estimation to Dynamic Environments for Modeling Mirror Neuron System
- 한국전자통신학회
- 한국전자통신학회 논문지
- 제19권 제3호
- 2024.06
- 583 - 588 (6 pages)
BCI(뇌-컴퓨터 인터페이스) 기술의 등장으로 거울 신경을 분석하는 것이 용이해졌다. 그러나 인간의 생각에 의존하는 BCI 시스템의 정확성을 평가하는 것은 그 질적 특성으로 인해 어려움을 겪는다. BCI의 잠재력을 활용하기 위해 우리는 움직임의 궁극적인 목표에 따라 발화 속도가 영향을 받는 인간의 거울 신경의 특성을 기반으로 정확도를 측정하는 새로운 접근법을 제안한다. 본 논문에 2장에서는 거울 신경을 소개한다. 또한, 거울 신경을 위한 인간 자세 추정에 대한 설명을 제시한다. 3장에서는 인간 자세 추정 기법을 활용하여 실시간 동적 환경에 적합한 강력한 포즈 추정 방법을 소개한다. 이어서 이러한 로봇 환경을 이용한 BCI의 정확성을 분석하는 방법을 제시한다.
With the emergence of Brain-Computer Interface (BCI) technology, analyzing mirror neurons has become more feasible. However, evaluating the accuracy of BCI systems that rely on human thoughts poses challenges due to their qualitative nature. To harness the potential of BCI, we propose a new approach to measure accuracy based on the characteristics of mirror neurons in the human brain that are influenced by speech speed, depending on the ultimate goal of movement. In Chapter 2 of this paper, we introduce mirror neurons and provide an explanation of human posture estimation for mirror neurons. In Chapter 3, we present a powerful pose estimation method suitable for real-time dynamic environments using the technique of human posture estimation. Furthermore, we propose a method to analyze the accuracy of BCI using this robotic environment.
Ⅰ. 서 론
Ⅱ. 관련 연구
Ⅲ. 본론
Ⅳ. 결과
Ⅴ. 결론 및 향후개선 방향
References