An Implementation of Effective CNN Model for AD Detection
An Implementation of Effective CNN Model for AD Detection
- 한국스마트미디어학회
- 스마트미디어저널
- Vol13, No.6
- 2024.06
- 90 - 97 (8 pages)
This paper focuses on detecting Alzheimer’s Disease (AD). The most usual form of dementia is Alzheimer's disease, which causes permanent cause memory cell damage. Alzheimer's disease, a neurodegenerative disease, increases slowly over time. For this matter, early detection of Alzheimer's disease is important. The purpose of this work is using Magnetic Resonance Imaging (MRI) to diagnose AD. A Convolution Neural Network (CNN) model, Reset, and VGG the pre-trained learning models are used. Performing analysis and validation of layers affects the effectiveness of the model. T1-weighted MRI images are taken for preprocessing from ADNI. The Dataset images are taken from the Alzheimer's Disease Neuroimaging Initiative (ADNI). 3D MRI scans into 2D image slices shows the optimization method in the training process while achieving 96% and 94% accuracy in VGG 16 and ResNet 18 respectively. This study aims to classify AD from brain 3D MRI images and obtain better results.
Ⅰ. INTRODUCTION
Ⅱ. MATERIAL AND METHOD
ACKNOWLEDGMENT
REFERENCES