상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
한국전자통신학회 논문지 제19권 제4호.jpg
KCI등재 학술저널

합성곱 신경망을 이용한 종 수준의 동물플랑크톤 분류기 및 시각화

Species-level Zooplankton Classifier and Visualization using a Convolutional Neural Network

DOI : 10.13067/JKIECS.2024.19.4.721
  • 5

동물플랑크톤의 종 동종은 해양 생태계의 이해 및 지구온난화를 연구하는데 가장 기본이다. 본 연구에서는 3종의 동물플랑크톤을 종 수준에서 암컷과 수컷을 분류할 수 있는 합성곱 신경망 모델을 제안한다. 첫째 연구자들이 획득하는 현미경 이미지를 기반으로 형태적 특징을 포함하는 학습데이터를 구축한다. 학습데이터의 구축에 있어 대상 종의 형태적 특징 정보를 보존하는 데이터 확대 방법을 적용한다. 둘째 구축된 학습데이터로부터 종 특징들이 학습될 수 있는 합성곱 신경망 모델을 제안한다. 제안한 모델은 높은 해상도를 고려하여 학습 이미지 정보 손실을 최소화하였고 완전 연결 층 대신에 전역 평균 폴링 층을 사용하여 학습 매개 변수 개수를 최소화하였다. 제안한 모델의 일반성을 제시하기 위해 새로이 획득한 데이터를 기반으로 성능을 제시하였다. 마지막으로 개발된 모델에서 추출된 특징들의 시각화를 통해, 분류 모델의 중요 특징을 제시하였다.

Species identification of zooplankton is the most basic process in understanding the marine ecosystem and studying global warming. In this study, we propose an convolutional neural network model that can classify females and males of three zooplankton at the species level. First, training data including morphological features is constructed based on microscopic images acquired by researchers. In constructing training data, a data argumentation method that preserves morphological feature information of the target species is applied. Next, we propose a convolutional neural network model in which features can be learned from the constructed learning data. The proposed model minimized the information loss of training image in consideration of high resolution and minimized the number of learning parameters by using the global average polling layer instead of the fully connected layer. In addition, in order to present the generality of the proposed model, the performance was presented based on newly acquired data. Finally, through the visualization of the features extracted from the model, the key features of the classification model were presented.

Ⅰ. 서 론

Ⅱ. 관련 연구

Ⅲ. 종 수준 동물플랑크톤 분류 및 시각화

Ⅳ. 결론 및 향후 연구

References

로딩중