상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
한국전자통신학회 논문지 제19권 제4호.jpg
KCI등재 학술저널

AI 및 IoT 기반 스마트팜 병충해 예측시스템 개발: YOLOv5 및 Isolation Forest 모델 적용 연구

Development of AI and IoT-based smart farm pest prediction system: Research on application of YOLOv5 and Isolation Forest models

DOI : 10.13067/JKIECS.2024.19.4.771
  • 50

본 연구에서는 딸기 농장을 대상으로 YOLOv5 아키텍처를 기반으로 한 컴퓨터 비전 모델과 Isolation Forest Classifier를 적용하여 병충해를 실시간으로 감지 및 예측하는 시스템을 개발하였다. 모델 성능 평가 결과, YOLOv5 모델은 평균 정밀도(mAP 0.5) 78.7%, 정확도 92.8%, 재현율 90.0%, F1 점수 76%로 높은 예측 성능을 나타냈다. 본 시스템은 딸기 농장뿐만 아니라 다른 작물과 다양한 환경에도 적용할 수 있도록 설계되었다. 토마토 농장에서 수집된 데이터를 기반으로 새로운 AI 모델을 학습한 결과, 주요 병충해인 역병과 황화병에 대한 예측정확도가 85% 이상으로 나타났으며, 기존 모델보다 예측 정확도가 10% 이상 향상되었다.

In this study, we implemented a real-time pest detection and prediction system for a strawberry farm using a computer vision model based on the YOLOv5 architecture and an Isolation Forest Classifier. The model performance evaluation showed that the YOLOv5 model achieved a mean average precision (mAP 0.5) of 78.7%, an accuracy of 92.8%, a recall of 90.0%, and an F1-score of 76%, indicating high predictive performance. This system was designed to be applicable not only to strawberry farms but also to other crops and various environments. Based on data collected from a tomato farm, a new AI model was trained, resulting in a prediction accuracy of over 85% for major diseases such as late blight and yellow leaf curl virus. Compared to the previous model, this represented an improvement of more than 10% in prediction accuracy.

Ⅰ. 서 론

Ⅱ. 관련 연구

Ⅲ. 연구 방법

Ⅳ. 연구 결과

Ⅴ. 결 론

References

로딩중