스마트팜 데이터를 활용한 오이 출하량 예측 시계열 모델 연구
A Study on Time Series Models for Predicting Cucumber Shipment Using Smart Farm Data
- 한국스마트미디어학회
- 스마트미디어저널
- Vol13, No.10
- : KCI등재후보
- 2024.10
- 59 - 66 (8 pages)
본 연구는 스마트팜 현장에서 수집한 농촌진흥청 데이터를 활용해 오이 출하량에 영향을 미치는 주요 변수를 확인하고, 다양한 예측 모델을 비교 분석하여 최적의 예측 모델을 제안한다. 연구 데이터는 36개의 작기별로 수집된 기상 조건, 재배 환경, 관리 활동 등의 변수를 포함하며, 예측 모델로는 다중회귀분석, ARIMA, LSTM, SARIMA를 사용했다. 성능은 RMSE와 MAE로 평가되었으며, SARIMA 모델이 가장 우수한 성능을 보였다. 하이퍼파라미터 조정을 통해 SARIMA 모델의 예측 정확도가 향상되었으며, 이는 오이 출하량이 계절성에 크게 의존하는 특성을 효과적으로 반영한 결과이다.
This study utilizes data collected by the Rural Development Administration from smart farm sites to identify key variables affecting cucumber shipment and proposes the most accurate prediction model through comparative analysis of various forecasting models. The dataset includes daily weather conditions, cultivation environments, and management activities from 36 different crop seasons. The predictive models used in this study include Multiple Regression, ARIMA(Auto Regressive Integrated Moving Average), LSTM(Long Short-Term Memory), and SARIMA(Seasonal Auto Regressive Integrated Moving Average). Model performance was evaluated using RMSE and MAE, with SARIMA demonstrating the best results. By optimizing the hyperparameters, SARIMA's prediction accuracy improved significantly, effectively capturing the strong seasonality in cucumber shipments.
Ⅰ. 서론
Ⅱ. 오이 생산량 예측 모델
Ⅲ. 결론
REFERENCES