상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
국가지식-학술정보

ON SURJECTIVITY OF m-ACCRETIVE OPERATORS IN BANACH SPACES

ON SURJECTIVITY OF m-ACCRETIVE OPERATORS IN BANACH SPACES

  • 0
커버이미지 없음

Recently many authors [2,3,5,6] proved the existence of zeros of accretive operators and estimated the range of m-accretive operators or compact perturbations of m-accretive operators more sharply. Their results could be obtained from differential equations in Banach spaces or iteration methods or Leray-Schauder degree theory. On the other hand Kirk and Schonberg [9] used the domain invariance theorem of Deimling [3] to prove some general minimum principles for continuous accretive operators. Kirk and Schonberg [10] also obtained the range of m-accretive operators (multi-valued and without any continuity assumption) and the implications of an equivalent boundary conditions. Their fundamental tool of proofs is based on a precise analysis of the orbit of resolvents of m-accretive operator at a specified point in its domain. In this paper we obtain a sufficient condition for m-accretive operators to have a zero. From this we derive Theorem 1 of Kirk and Schonberg [10] and some results of Morales [12, 13] and Torrejon[15]. And we further generalize Theorem 5 of Browder [1] by using Theorem 3 of Kirk and Schonberg [10].

(0)

(0)

로딩중