국가지식-학술정보
On the asymptotic-norming property in lebesgue-bochner function spaces
On the asymptotic-norming property in lebesgue-bochner function spaces
- 대한수학회
- Bulletin of the Korean Mathematical Society
- Vol.29 No.2
-
1992.01227 - 232 (6 pages)
- 0
커버이미지 없음
In this paper we prove that if (.ohm., .SIGMA., .mu.) is a non-purely atomic measure space and X is strictly convex, then X has the asymptotic-norming property II if and only if $L_{p}$ (X, .mu.), 1 < p < .inf., has the asymptotic-norming property II. And we prove that if $X^{*}$ is an Asplund space and strictly convex, then for any p, 1 < p < .inf., $X^{*}$ has the .omega.$^{*}$-ANP-II if and only if $L_{p}$ ( $X^{*}$, .mu.) has the .omega.$^{*}$-ANP-II.*/-ANP-II.
(0)
(0)