상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
국가지식-학술정보

On the asymptotic-norming property in lebesgue-bochner function spaces

On the asymptotic-norming property in lebesgue-bochner function spaces

  • 0
커버이미지 없음

In this paper we prove that if (.ohm., .SIGMA., .mu.) is a non-purely atomic measure space and X is strictly convex, then X has the asymptotic-norming property II if and only if $L_{p}$ (X, .mu.), 1 < p < .inf., has the asymptotic-norming property II. And we prove that if $X^{*}$ is an Asplund space and strictly convex, then for any p, 1 < p < .inf., $X^{*}$ has the .omega.$^{*}$-ANP-II if and only if $L_{p}$ ( $X^{*}$, .mu.) has the .omega.$^{*}$-ANP-II.*/-ANP-II.

(0)

(0)

로딩중