상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
국가지식-학술정보

Full hereditary $C^{*}$-subalgebras of crossed products

Full hereditary $C^{*}$-subalgebras of crossed products

  • 0
커버이미지 없음

A hereditary $C^{*}$-subalgebra B of a $C^{*}$-algebra A is said to be full if B is not contained in any proper closed two-sided ideal in A, so each hereditary $C^{*}$-subalgebra of a simple $C^{*}$-algebra is always full. It is well known that every $C^{*}$-algebra is strong Morita equivalent to its full hereditary $C^{*}$-subalgebra, but the strong Morita equivalence of a $C^{*}$-algebra A and its hereditary $C^{*}$-subalgebra B does not imply the fullness of B, ingeneral. We present the following lemma for our computational convenience in the course of the proof of the main theorem. Note that $L_{B}$, $L_{B}$$^{*}$ and $L_{B}$ $L_{B}$$^{*}$ are all .alpha.-invariant whenever B is .alpha.-invariant under the action .alpha. of G.a. of G.a. of G.a. of G.f G.

(0)

(0)

로딩중