국가지식-학술정보
On the critical maps of the dirichlet functional with volume constraint
On the critical maps of the dirichlet functional with volume constraint
- 대한수학회
- Bulletin of the Korean Mathematical Society
- Vol.32 No.2
-
1995.01303 - 308 (6 pages)
- 0
커버이미지 없음
We consider a torus T, that is, a compact surface with genus 1 and $\Omega = D^2 \times S^1$ topologically with $\partial\Omega = T$, where $D^2$ is the open unit disk and $S^1$ is the unit circle. Let $\omega = (x,y)$ denote the generic point on T. For a smooth immersion $u : T \to R^3$, we define the Dirichlet functional by $$ E(u) = \frac{2}{1} \int_{T} $\mid$\nabla u$\mid$^2 d\omega $$ and the volume functional by $$ V(u) = \frac{3}{1} \int_{T} u \cdot u_x \Lambda u_y d\omege $$.
(0)
(0)