국가지식-학술정보
A NOTE ON SUMS OF RANDOM VECTORS WITH VALUES IN A BANACH SPACE
A NOTE ON SUMS OF RANDOM VECTORS WITH VALUES IN A BANACH SPACE
- 대한수학회
- Communications of the Korean Mathematical Society
- Vol.10 No.2
-
1995.01439 - 442 (4 pages)
- 0
커버이미지 없음
Let ${X_n : n = 1,2,\cdots}$ be a sequence of pairwise independent identically distributed random vectors taking values in a separable Hilbert space H such that $E \Vert X_1 \Vert = \infty$. Let $S_n = X_1 + X_2 + \cdots + X_n$ and for any real $\alpha$ with $0 < \alpha < 1$ define a sequence ${\gamma_n(\alpha)}$ as $\gamma_n(\alpha) = inf {r : P(\Vert S_n \Vert \leq r) \geq \alpha}$. Then $$ lim_{n \to \infty} sup \Vert S_n \Vert/\gamma_n(\alpha) = \infty $$ holds. This is a generalization of Vvedenskaya[2].
(0)
(0)