상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
국가지식-학술정보

A NOTE ON SUMS OF RANDOM VECTORS WITH VALUES IN A BANACH SPACE

A NOTE ON SUMS OF RANDOM VECTORS WITH VALUES IN A BANACH SPACE

  • 0
커버이미지 없음

Let ${X_n : n = 1,2,\cdots}$ be a sequence of pairwise independent identically distributed random vectors taking values in a separable Hilbert space H such that $E \Vert X_1 \Vert = \infty$. Let $S_n = X_1 + X_2 + \cdots + X_n$ and for any real $\alpha$ with $0 < \alpha < 1$ define a sequence ${\gamma_n(\alpha)}$ as $\gamma_n(\alpha) = inf {r : P(\Vert S_n \Vert \leq r) \geq \alpha}$. Then $$ lim_{n \to \infty} sup \Vert S_n \Vert/\gamma_n(\alpha) = \infty $$ holds. This is a generalization of Vvedenskaya[2].

(0)

(0)

로딩중