상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
국가지식-학술정보

ON THE SUPERSTABILITY OF SOME FUNCTIONAL INEQUALITIES WITH THE UNBOUNDED CAUCHY DIFFERENCE (x+y)-f(x)f(y)

  • 0
커버이미지 없음

Assume $H_i : R_+ \times R_+ \to R_+ (i = 1, 2)$ are monotonically increasing (in both variables), homogeneous mapping for which $H_1(tu, tv) = t^p(H_1(u, v) (p > 0)$ and $H_2(u, v)^{t^q} (q \leq 1)$ hold for $t, u, v \geq 0$. Using an idea from the paper of Baker, Lawrence and Zorzitto [2], the superstability problems of the functional inequalities $\Vert f(x+y) - f(x)f(y) \Vert \leq H_i (\Vert x \Vert, \Vert y \Vert)$ shall be investigated.

(0)

(0)

로딩중