상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
국가지식-학술정보

Smoothing Parameter Selection Using Multifold Cross-Validation in Smoothing Spline Regressions

Smoothing Parameter Selection Using Multifold Cross-Validation in Smoothing Spline Regressions

  • 0
커버이미지 없음

The smoothing parameter <TEx>$\lambda$</TEx> in smoothing spline regression is usually selected by minimizing cross-validation (CV) or generalized cross-validation (GCV). But, simple CV or GCV is poor candidate for estimating prediction error. We defined MGCV (Multifold Generalized Cross-validation) as a criterion for selecting smoothing parameter in smoothing spline regression. This is a version of cross-validation using $leave-\kappa-out$ method. Some numerical results comparing MGCV and GCV are done.

(0)

(0)

로딩중