국가지식-학술정보
CLIFFORD $L^2$-COHOMOLOGY ON THE COMPLETE KAHLER MANIFOLDS II
CLIFFORD $L^2$-COHOMOLOGY ON THE COMPLETE KAHLER MANIFOLDS II
- 대한수학회
- Bulletin of the Korean Mathematical Society
- Vol.35 No.4
-
1998.01669 - 681 (13 pages)
- 0
커버이미지 없음
In this paper, we prove that on the complete Kahler manifold, if ${\rho}(x){\geq}-\frac{1}{2}{\lambda}_0$ and either ${\rho}(x_0)>-\frac{1}{2}{lambda}_0$ at some point $x_0$ or Vol(M)=${\infty}$, then the Clifford $L^2$ cohomology group $L^2{\mathcal H}^{\ast}(M,S)$ is trivial, where $\rho(x)$ is the least eigenvalue of ${\mathcal R}_x + \bar{{\mathcal R}}(x)\;and\;{\lambda}_0$ is the infimum of the spectrum of the Laplacian acting on $L^2$-functions on M.
(0)
(0)