상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
국가지식-학술정보

AN EXTENSION OF THE FUGLEDE-PUTNAM THEOREM TO p-QUASITHYPONORMAL OPERATORS

AN EXTENSION OF THE FUGLEDE-PUTNAM THEOREM TO p-QUASITHYPONORMAL OPERATORS

  • 0
커버이미지 없음

The equation AX = BX implies $A^*X\;=\;B^X$ when A and B are normal (Fuglede-Putnam theorem). In this paper, the hypotheses on A and B can be relaxed by usin a Hilbert-Schmidt operator X: Let A be p-quasihyponormal and let $B^*$ be invertible p-quasihyponormal such that AX = XB for a Hilbert-Schmidt operator X and $|||A^*|^{1-p}||{\cdot}|||B^{-1}|^{1-p}||\;{\leq}\;1$.Then $A^*X\;=\;XB^*$.

(0)

(0)

로딩중