국가지식-학술정보
AN EXTENSION OF THE FUGLEDE-PUTNAM THEOREM TO p-QUASITHYPONORMAL OPERATORS
AN EXTENSION OF THE FUGLEDE-PUTNAM THEOREM TO p-QUASITHYPONORMAL OPERATORS
- 대한수학회
- Bulletin of the Korean Mathematical Society
- Vol.35 No.2
-
1998.01319 - 324 (6 pages)
- 0
커버이미지 없음
The equation AX = BX implies $A^*X\;=\;B^X$ when A and B are normal (Fuglede-Putnam theorem). In this paper, the hypotheses on A and B can be relaxed by usin a Hilbert-Schmidt operator X: Let A be p-quasihyponormal and let $B^*$ be invertible p-quasihyponormal such that AX = XB for a Hilbert-Schmidt operator X and $|||A^*|^{1-p}||{\cdot}|||B^{-1}|^{1-p}||\;{\leq}\;1$.Then $A^*X\;=\;XB^*$.
(0)
(0)