국가지식-학술정보
FRACTIONAL MAXIMAL AND INTEGRAL OPERATORS ON WEIGHTED AMALGAM SPACES
FRACTIONAL MAXIMAL AND INTEGRAL OPERATORS ON WEIGHTED AMALGAM SPACES
- 대한수학회
- Journal of the Korean Mathematical Society
- Vol.36 No.5
-
1999.01855 - 890 (36 pages)
- 0
커버이미지 없음
Necessary and sufficient conditions on the weight functions u(.) and $\upsilon$(.) are derived in order that the fractional maximal operator $M\alpha,\;0\;\leq\;\alpha\;<\;1$, is bounded from the weighted amalgam space $\ell^s(L^p(\mathbb{R},\upsilon(x)dx)$ into $\ell^r(L^q(\mathbb{R},u(x)dx)$ whenever $1\leq s\leq r<\infty\;and\;1<p\leq q<\infty$. The boundedness problem for the fractional intergral operator $I_{\alpha},0<\alpha\leq1$, is also studied.
(0)
(0)