국가지식-학술정보
준 노름 퍼지 적분에 의해 정의된 퍼지 측도
Fuzzy Measures Defined by the Semi-Normed Fuzzy Integrals
- 한국콘텐츠학회
- The Journal of the Korea Contents Association
- Vol.2 No.4
-
2002.0199 - 103 (5 pages)
- 0
커버이미지 없음
본 논문에서는 t 준노름이 연속인 경우 이미 주어진 퍼지 측도에 관한 측정 가능한 함수의 준 노름 퍼지 적분을 이용하여 퍼지 측도를 정의하는 방법에 대해서 조사했다. 즉 (X, F, g)이 퍼지 측도 공간이라고 하고 h$\in$L$^\circ$(X), 이며 $\top$는 연속 t 준노름이라 하자. 그러면 임의의 $A\in$F에 대해 $\nu$(A)=$\int _A$h$\top$g에 의하여 정의된 집합치 함수 $\nu$는 (X, F)상에서 퍼지 측도이다.
In this paper, we investigate for how to define a fuzzy measure by using the semi-normed fuzzy integral of a given measurable function with respect to another given fuzzy measure when t-seminorm is continuous. Let (X, F, g) be a fuzzy measure space, h$\in$L$^\circ$(X), and $\top$ be a continuous t-seminorm.. Then the set function $\nu$ defined by $\nu$(A)=$\int _A$h$\top$g for any $A\in$F is a fuzzy measure on (X, F).
(0)
(0)