상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
국가지식-학술정보

A CONSTRUCTION OF MAXIMAL COMMUTATIVE SUBALGEBRA OF MATRIX ALGEBRAS

A CONSTRUCTION OF MAXIMAL COMMUTATIVE SUBALGEBRA OF MATRIX ALGEBRAS

  • 0
커버이미지 없음

Let (B, m$_{B}$, k) be a maximal commutative $textsc{k}$-subalgebra of M$_{m}$(k). Then, for some element z $\in$ Soc(B), a k-algebra R = B[X,Y]/I, where I = (m$_{B}$X, m$_{B}$Y, X$^2$- z,Y$^2$- z, XY) will create an interesting maximal commutative $textsc{k}$-subalgebra of a matrix algebra which is neither a $C_1$-construction nor a $C_2$-construction. This construction will also be useful to embed a maximal commutative $textsc{k}$-subalgebra of matrix algebra to a maximal commutative $textsc{k}$-subalgebra of a larger size matrix algebra.gebra.a.

(0)

(0)

로딩중