국가지식-학술정보
A WEAK LAW FOR WEIGHTED SUMS OF ARRAY OF ROW NA RANDOM VARIABLES
A WEAK LAW FOR WEIGHTED SUMS OF ARRAY OF ROW NA RANDOM VARIABLES
- 대한수학회
- Bulletin of the Korean Mathematical Society
- Vol.40 No.2
-
2003.01341 - 349 (9 pages)
- 0
커버이미지 없음
Let {$x_{nk}\;$\mid$1\;\leq\;k\;\leq\;n,\;n\;\geq\;1$} be an array of random varianbles and $\{a_n$\mid$n\;\geq\;1\}\;and\;\{b_n$\mid$n\;\geq\;1} be a sequence of constants with $a_n\;>\;0,\;b_n\;>\;0,\;n\;\geq\;1. In this paper, for array of row negatively associated(NA) random variables, we establish a general weak law of large numbers (WLLA) of the form (${\sum_{\kappa=1}}^n\;a_{\kappa}X_{n\kappa}\;-\;\nu_{n\kappa})\;/b_n$ converges in probability to zero, as $n\;\rightarrow\;\infty$, where {$\nu_{n\kappa}$\mid$1\;\leq\;\kappa\;\leq\;n,\;n\;\geq\;1$} is a suitable array of constants.
(0)
(0)