상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
국가지식-학술정보

계절별 위성자료를 이용한 미국 캔자스주 식생 분류 - 하이브리드 접근방식의 적용 -

Kansas Vegetation Mapping Using Multi-Temporal Remote Sensing Data: A Hybrid Approach

  • 0
커버이미지 없음

미국 캔자스주 정부와 연방정부가 필요로 하는 상세한 지표피복 수치지도제작을 위해, Landsat Thematic Mapper 자료를 이용하여 캔자스주 전체를 대상으로 43가지로 분류된 식생군단(vegetation alliance) 수준의 자연식 생지도를 제작하였다. 지도제작 방법으로는 봄, 여름, 가을의 계절별 위성자료를 이용하여 두 단계 분류절차를 거치는 이른바 '하이브리드(hybrid)' 방식을 채택하였다. 이 접근 방법은 첫 단계로 unsupervised classification을 이용, 자연녹지를 농경지로부터 분리해 낸 다음. 두 번째 단계에서 supervised classification, 현장확인조사. 그리고 분류 후 다양한 보강자료를 이용하여 최종적으로 자연식생을 구분ㆍ분류해 내는 것이다. 정확도 평가는 세 가지 분류 수준에서 실행되었는데, 이는 앤더슨 분류단계 I(Anderson level I), 식생군계(vegetation formation), 그리고 식생군단 수준을 포함한다. 확인결과 전반적인 정확도는 51.7%에서 89.4%에 이르는 것으로 조사되었다.

To address the requirements of gap analysis for species protection, as well as the needs of state and federal agencies for detailed digital land cover, a 43-class map at the vegetation alliance level was created for the state of Kansas using multi-temporal Thematic Mapper imagery. The mapping approach included the use of three-date multi-seasonal imagery, a two-stage classification approach that first masked out cropland areas using unsupervised classification and then mapped natural vegetation with supervised classification, visualization techniques utilizing a map of small multiples and field experts, and extensive use of ancillary data in post-hoc processing. Accuracy assessment was conducted at three levels of generalization (Anderson Level I, vegetation formation, and vegetation alliance) and three cross-tabulation approaches. Overall accuracy ranged from 51.7% to 89.4%, depending on level of generalization, while accuracy figures for individual alliance classes varied by area covered and level of sampling.

(0)

(0)

로딩중