ON UNIVERSAL FUNCTIONS
ON UNIVERSAL FUNCTIONS
- 대한수학회
- Journal of the Korean Mathematical Society
- Vol.41 No.1
-
2004.0165 - 76 (12 pages)
- 0
An entire function $f\;{\in}\;H(\mathbb{C})$ is called universal with respect to translations if for any $g\;{\in}\;H(\mathbb{C}),\;R\;>\;0,\;and\;{\epsilon}\;>\;0$, there is $n\;{\in}\;{\mathbb{N}}$ such that $$\mid$f(z\;+\;n)\;-\;g(z)$\mid$\;<\;{\epsilon}$ whenever $$\mid$z$\mid$\;{\leq}\;R$. Similarly, it is universal with respect to differentiation if for any g, R, and $\epsilon$, there is n such that $$\mid$f^{(n)}(z)\;-\;g(z)$\mid$\;<\;{\epsilon}\;for\;$\mid$z$\mid$\;{\leq}\;R$. In this note, we review G. MacLane's proof of the existence of universal functions with respect to differentiation, and we give a simplified proof of G. D. Birkhoff's theorem showing the existence of universal functions with respect to translation. We also discuss Godefroy and Shapiro's extension of these results to convolution operators as well as some new, related results and problems.
(0)
(0)