COMPOSITION OPERATORS ON THE PRIVALOV SPACES OF THE UNIT BALL OF ℂ<sup>n</sup>
- 대한수학회
- Journal of the Korean Mathematical Society
- Vol.42 No.1
-
2005.01111 - 127 (17 pages)
- 0
Let B and S be the unit ball and the unit sphere in $\mathbb{C}^n$, respectively. Let ${\sigma}$ be the normalized Lebesgue measure on S. Define the Privalov spaces $N^P(B)\;(1\;<\;p\;<\;{\infty})$ by $$N^P(B)\;=\;\{\;f\;{\in}\;H(B) : \sup_{0<r<1}{\Bigint}_S \{log(1+|f(\gamma\zeta)|)\}^{p}d\sigma(\zeta)\;<\;\infty\;\}$$ where H(B) is the space of all holomorphic functions in B. Let ${\varphi}$ be a holomorphic self-map of B. Let ${\mu}$ denote the pull-back measure ${\sigma}o({\varphi}^{\ast})^{-1}$. In this paper, we prove that the composition operator $C_{\varphi}$ is metrically bounded on $N^P$(B) if and only if ${\mu}(S(\zeta,\delta)){\le}C{\delta}^n$ for some constant C and $C_{\varphi}$ is metrically compact on $N^P(B)$ if and only if ${\mu}(S(\zeta,\delta))=o({\delta}^n)$ as ${\delta}\;{\downarrow}\;0$ uniformly in ${\zeta}\;\in\;S. Our results are an analogous results for Mac Cluer's Carleson-measure criterion for the boundedness or compactness of $C_{\varphi}$ on the Hardy spaces $H^P(B)$.
(0)
(0)