국가지식-학술정보
WEYL SPECTRUM OF THE PRODUCTS OF OPERATORS
WEYL SPECTRUM OF THE PRODUCTS OF OPERATORS
- 대한수학회
- Journal of the Korean Mathematical Society
- Vol.45 No.3
-
2008.01771 - 780 (10 pages)
- 0
커버이미지 없음
Let $M_C=\(\array{A&C\\0&B}\)$ be a $2{\times}2$ upper triangular operator matrix acting on the Hilbert space $H{\bigoplus}K\;and\;let\;{\sigma}_w(\cdot)$ denote the Weyl spectrum. We give the necessary and sufficient conditions for operators A and B which ${\sigma}_w\(\array{A&C\\0&B}\)={\sigma}_w\(\array{A&C\\0&B}\)\;or\;{\sigma}_w\(\array{A&C\\0&B}\)={\sigma}_w(A){\cup}{\sigma}_w(B)$ holds for every $C{\in}B(K,\;H)$. We also study the Weyl's theorem for operator matrices.
(0)
(0)