인체측정조사에서 측정곤란부위 예측을 위한 의사결정나무 추천 모형 탐지에 관한 연구
A Study on Exploration of the Recommended Model of Decision Tree to Predict a Hard-to-Measure Mesurement in Anthropometric Survey
- 한국통계학회
- The Korean Journal of Applied Statistics
- Vol.22 No.5
-
2009.01923 - 935 (13 pages)
- 0
본 연구는 의사결정나무의 추천 모형 선택을 위한 비교실험에 초점을 두고 있다. 의사결정나무 모형은 구축된 모형에 기반을 두고 미래 관측치에 대한 예측 기능을 수행하게 될 것이므로 구축된 모형이 아무리 정치(精緻)하다고 하더라도 일반화의 성질을 충족시키지 못하면 실제성이 없게 된다. 따라서 본 연구는 교차타당성 검토를 통해 일반화의 성질을 충족시키면서 우수한 예측력을 갖는 추천 모형을 탐지하는 절차를 연구하는 데에 초점을 맞추고 있다. 사례 연구로 인체측정자료를 사용하여 측정곤란부위 예측을 위한 의사결정나무 추천 모형을 탐지한다. 그 결과 CART 모형 이 추천 모형으로 탐지되었다.
This study aims to explore a recommended model of decision tree to predict a hard-to-measure measurement in anthropometric survey. We carry out an experiment on cross validation study to obtain a recommened model of decision tree. We use three split rules of decision tree, those are CHAID, Exhaustive CHAID, and CART. CART result is the best one in real world data.
(0)
(0)