상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
국가지식-학술정보

잡음영상에서 아메바를 이용한 형태학적 에지검출

Edge Detection using Morphological Amoebas Noisy Images

  • 0
커버이미지 없음

영상에서 에지검출은 영상처리시스템과 컴퓨터비전에서 매우 중요한 단계이다. 지금까지 형태학적 에지검출은 고정된 구조적 요소를 사용한 형태학적 연산 토대 하에서 수행되어왔다. 본 논문에서는 잡음영상에서 에지검출을 위해 영상의 다양한 형태에 맞춰 다이내믹하게 모양이 변하는 아메바라는 구조적 요소를 사용하고자 한다. 제안된 에지검출 방법의 성능을 시각적인 방법뿐만 아니라 객관적인 척도인 PFOM과 ROC 곡선을 사용하여 정성적, 정량적으로 모두 평가하였다. 영상 설험 결과 고정된 구조적 요소를 이용하는 기존의 방법보다 잡음에 덜 민감하였으며 미세한 에지까지도 검출하는 뛰어난 성능을 보여주었다.

Edge detection in images has been widely used in image processing system and computer vision. Morphological edge detection has used structuring elements with fixed shapes. This paper presents morphological operators with non-fixed shape kernels, or amoebas, which take into account the image contour variations to adapt their shape. Experimental results are analyzed in both qualitative analysis through visual inspection and quantitative analysis with PFOM and ROC curves. The Experiments demonstrate that these novel operators outperform classical morphological operations with a fixed, space-invariant structuring elements for edge detection applications.

(0)

(0)

로딩중