국가지식-학술정보
LIE IDEALS AND DERIVATIONS OF $\sigma$-PRIME RINGS
LIE IDEALS AND DERIVATIONS OF $\sigma$-PRIME RINGS
- 한국수학교육학회
- The Pure and Applied Mathematics
- Vol.17 No.1
-
2010.0187 - 92 (6 pages)
- 0
커버이미지 없음
Let R be a 2-torsion free $\sigma$-prime ring with an involution $\sigma$, U a nonzero square closed $\sigma$-Lie ideal, Z(R) the center of Rand d a derivation of R. In this paper, it is proved that d = 0 or $U\;{\subseteq}\;Z(R)$ if one of the following conditions holds: (1) $d(xy)\;-\;xy\;{\in}\;Z(R)$ or $d(xy)\;-\;yx\;{\in}Z(R)$ for all x, $y\;{\in}\;U$. (2) $d(x)\;{\circ}\;d(y)\;=\;0$ or $d(x)\;{\circ}\;d(y)\;=\;x\;{\circ}\;y$ for all x, $y\;{\in}\;U$ and d commutes with $\sigma$.
(0)
(0)