Melt Copolymerization Reactions between 1,3-Bis(diethylamino)tetramethyldisiloxane and Aryldiol Derivatives
Melt Copolymerization Reactions between 1,3-Bis(diethylamino)tetramethyldisiloxane and Aryldiol Derivatives
- 대한화학회
- Bulletin of the Korean Chemical Society
- Vol.32 No.4
-
2011.011303 - 1309 (7 pages)
- 0
Melt copolymerization reactions of bis(diethylamino)tetramethyldisiloxane with several aryldiols were carried out to afford poly(carbotetramethyldisiloxane)s containing fluorescent aromatic chromophore groups in the polymer main chain: poly{oxy(4,4'-biphenylene)oxytetramethyldisiloxane}, poly{oxy(1,4-phenylene)oxytetramethyldisiloxane}, poly[oxy{(4,4'-isopropylidene)diphenylene}oxytetramethyldisiloxane], poly[oxy{(4,4'-hexafluoroisopropylidene)diphenylene}oxytetramethyldisiloxane], poly{oxy(2,6-naphthalene)oxytetramethyldisiloxane}, poly[oxy{4,4'-(9-fluorenylidene)diphenylene}oxytetramethyldisiloxane], poly{oxy(fluorene-9,9-dimethylene)oxytetramethyldisiloxane}, and poly[oxy{4,4'-(9-fluorenylidene)bis(2-phenoxyethylene)}oxytetramethyldisiloxane]. These materials are soluble in common organic solvents such as $CHCl_3$ and THF. The FTIR spectra of all the polymers exhibit the characteristic Si-O-C stretching frequencies at 1021-1082 $cm^{-1}$. In the THF solution, the polymeric materials show strong maximum absorption peaks at 215-311 nm, with strong maximum excitation peaks at 250-310 nm, and strong maximum fluorescence emission bands at 310-360 nm. TGA thermograms indicate that most of the polymers are stable up to $200^{\circ}C$ with a weight loss of less than 10% in nitrogen.
(0)
(0)