NLP기반 NER을 이용해 소셜 네트워크의 조직 구조 탐색을 위한 협력 프레임 워크
A Collaborative Framework for Discovering the Organizational Structure of Social Networks Using NER Based on NLP
- 한국인터넷정보학회
- Journal of Internet Computing and Services
- Vol.13 No.2
-
2012.0199 - 108 (10 pages)
- 0
방대한 양의 데이터로부터 정보추출의 정확도를 향상시키기 위한 많은 방법이 개발되어 왔다. 본 논문에서는NER(named entity recognition), 문장 추출, 스피치 태깅과 같은 여러 가지의 자연어 처리 작업을 통합하여 텍스트를 분석하였다. 데이터는 도메인에 특화된 데이터 추출 에이전트를 사용하여 웹에서 수집한 텍스트로 구성하였고, 위에서 언급한 자연어 처리 작업을 사용하여 비 구조화된 데이터로부터 정보를 추출하는 프레임 워크를 개발하였다. 조직 구조의 탐색을 위한 택스트 추출 및 분석 관점에서 연구의 성능을 시뮬레이션을 통해 분석하였으며, 시뮬레이션 결과, 정보추출에서 MUC 및 CoNLL과 같은 다른 NER 분석기 보다 성능이 우수함을 보였다.
Many methods had been developed to improve the accuracy of extracting information from a vast amount of data. This paper combined a number of natural language processing methods such as NER (named entity recognition), sentence extraction, and part of speech tagging to carry out text analysis. The data source is comprised of texts obtained from the web using a domain-specific data extraction agent. A framework for the extraction of information from unstructured data was developed using the aforementioned natural language processing methods. We simulated the performance of our work in the extraction and analysis of texts for the detection of organizational structures. Simulation shows that our study outperformed other NER classifiers such as MUC and CoNLL on information extraction.
(0)
(0)