국가지식-학술정보
CONVERGENCE OF DOUBLE SERIES OF RANDOM ELEMENTS IN BANACH SPACES
CONVERGENCE OF DOUBLE SERIES OF RANDOM ELEMENTS IN BANACH SPACES
- 대한수학회
- Journal of the Korean Mathematical Society
- Vol.49 No.5
-
2012.011053 - 1064 (12 pages)
- 0
커버이미지 없음
For a double array of random elements $\{X_{mn};m{\geq}1,n{\geq}1\}$ in a $p$-uniformly smooth Banach space, $\{b_{mn};m{\geq}1,n{\geq}1\}$ is an array of positive numbers, convergence of double random series ${\sum}^{\infty}_{m=1}{\sum}^{\infty}_{n=1}X_{mn}$, ${\sum}^{\infty}_{m=1}{\sum}^{\infty}_{n=1}b^{-1}_{mn}X_{mn}$ and strong law of large numbers $$b^{-1}_{mn}\sum^m_{i=1}\sum^n_{j=1}X_{ij}{\rightarrow}0$$ as $$m{\wedge}n{\rightarrow}{\infty}$$ are established.
(0)
(0)