Krylov-Schur 순환법을 이용한 3-차원 원통구조 도파관의 고유특성 연구
A Study on Eigen-properties of a 3-Dim. Resonant Cavity by Krylov-Schur Iteration Method
- 대한전자공학회
- Journal of the Institute of Electronics and Information Engineers
- Vol.51 No.7
-
2014.01142 - 148 (7 pages)
- 0
3-차원 원통 구조의 공명관에 Krylov-Schur 순환 법을 적용하였다. 균질한 메질에서 공명파의 세기를 기술하는 벡터 Helmholtz 방정식을 FEM을 이용하여 분석하였다. 고유 방정식은 사면 배위 구조 요소의 변-접선 벡터에 기반을 두어 구성하였다. 이 방정식은 Helmholtz 작용자의 curl-curl과 연관된 정방형 행렬들로 이루어져 있다. 고유-값들과 고유-모드들은 이들에 대하여 Krylov-Schur 순환 법을 적용하고, Schur 행렬의 대각 성분들과 변환 행렬들로 부터 구하였다. 결과로써 이들 고유-값과 고유-모드 쌍들을 시각적으로 묘사하였다. 그리고 각각의 경계조건에 따른 고유-쌍들을 서로 비교하였다.
Krylov-Schur iteration method has been applied to the 3-Dim. resonant cavity of a cylindrical form. The vector Helmholtz equation has been analysed for the resonant field strength in homogeneous media by FEM. An eigen-equation has been constructed from element equations basing on tangential edges of the tetrahedra element. This equation made up of two square matrices associated with the curl-curl form of the Helmholtz operator. By performing Krylov-Schur iteration loops on them, Eigen-values and their modes have been determined from the diagonal components of the Schur matrices and its transforming matrices. Eigen-pairs as a result have been revealed visually in the schematic representations. The spectra have been compared with each other to identify the effect of boundary conditions.
(0)
(0)