상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
국가지식-학술정보

GENERALIZED DERIVATIONS WITH CENTRALIZING CONDITIONS IN PRIME RINGS

GENERALIZED DERIVATIONS WITH CENTRALIZING CONDITIONS IN PRIME RINGS

  • 0
커버이미지 없음

Let R be a noncommutative prime ring of characteristic different from 2, U the Utumi quotient ring of R, C the extended centroid of R and f($x_1,{\ldots},x_n$) a noncentral multilinear polynomial over C in n noncommuting variables. Denote by f(R) the set of all the evaluations of f($x_1,{\ldots},x_n$) on R. If d is a nonzero derivation of R and G a nonzero generalized derivation of R such that $$d(G(u)u){\in}Z(R)$$ for all $u{\in}f(R)$, then $f(x_1,{\ldots},x_n)^2$ is central-valued on R and there exists $b{\in}U$ such that G(x) = bx for all $x{\in}R$ with $d(b){\in}C$. As an application of this result, we investigate the commutator $[F(u)u,G(v)v]{\in}Z(R)$ for all $u,v{\in}f(R)$, where F and G are two nonzero generalized derivations of R.

(0)

(0)

로딩중