다중 강우유출자료를 이용한 Clark 단위도의 Bayesian 매개변수 추정
Bayesian parameter estimation of Clark unit hydrograph using multiple rainfall-runoff data
- 한국수자원학회
- Journal of Korea Water Resources Association
- Vol.53 No.5
-
2020.01383 - 393 (11 pages)
- 0
본 연구에서는 소양강댐 유역에서의 실측 단일사상 강우-유출 자료를 활용하여 Clark 단위도 방법의 매개변수를 최적화 하였으며, 그 결과를 제시하였다. 일반적으로 국내에서는 유역특성인자 최적화 분석시 미육군공병단의 HEC-1, HEC-HMS 등의 모형을 사용하고 있다. 그러나 해당 모형의 경우 유출수문곡선의 형상, 크기 등의 재현에만 초점이 맞춰져 있으며, 산정된 매개변수들의 평균을 사용하고 있어 실제 강우-유출 관계를 묘사하는데 어려움이 존재하고 있다. 이러한 점에서 본 연구에서는 기존 Clark 합성단위도법과 계층적 Bayesian 기법을 결합하여 수집된 강우-유출 자료를 동시에 활용하여 매개변수를 산정할 수 있는 모형을 개발하였다. 본 연구에서 개발된 모형을 적용한 결과 개별 단일사상 기반의 최적화 기법에 비해 다중 강우-유출 자료를 Pooling하여 매개변수를 산정하는 계층적 Bayesian 모형에서 BIC 결과 및 다수의 통계적 지표를 통해 모형의 우수성을 확인할 수 있었다. 더불어 홍수량에 따른 유역특성인자 매개변수 반응에 대한 관계규명을 기반으로 향후 댐 설계 또는 PMF 산정시 본 연구의 결과가 활용이 가능할 것으로 판단된다.
The main objective of this study is to provide a robust model for estimating parameters of the Clark unit hydrograph (UH) using the observed rainfall-runoff data in the Soyangang dam basin. In general, HEC-1 and HEC-HMS models, developed by the Hydrologic Engineering Center, have been widely used to optimize the parameters in Korea. However, these models are heavily reliant on the objective function and sample size during the optimization process. Moreover, the optimization process is carried out on the basis of single rainfall-runoff data, and the process is repeated for other events. Their averaged values over different parameter sets are usually used for practical purposes, leading to difficulties in the accurate simulation of discharge. In this sense, this paper proposed a hierarchical Bayesian model for estimating parameters of the Clark UH model. The proposed model clearly showed better performance in terms of Bayesian inference criterion (BIC). Furthermore, the result of this study reveals that the proposed model can also be applied to different hydrologic fields such as dam design and design flood estimation, including parameter estimation for the probable maximum flood (PMF).
(0)
(0)