상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
국가지식-학술정보

ON 4-TOTAL MEAN CORDIAL GRAPHS

ON 4-TOTAL MEAN CORDIAL GRAPHS

  • 0
커버이미지 없음

Let G be a graph. Let f : V (G) &#x2192; {0, 1, &#x2026;, k - 1} be a function where k &#x2208; &#x2115; and k > 1. For each edge uv, assign the label $f(uv)={\lceil}{\frac{f(u)+f(v)}{2}}{\rceil}$. f is called k-total mean cordial labeling of G if ${\mid}t_{mf}(i)-t_{mf}(j){\mid}{\leq}1$, for all i, j &#x2208; {0, 1, &#x2026;, k - 1}, where t<sub>mf</sub> (x) denotes the total number of vertices and edges labelled with x, x &#x2208; {0, 1, &#x2026;, k-1}. A graph with admit a k-total mean cordial labeling is called k-total mean cordial graph.

(0)

(0)

로딩중