Generalized Extreme Value 분포 자료의 교차상관과 L-모멘트 추정값의 교차상관의 관계 유도
Derivation of Relationship between Cross-site Correlation among data and among Estimators of L-moments for Generalize Extreme value distribution
- 대한토목학회
- KSCE Journal of Civil and Environmental Engineering Research
- Vol.29 No.3B
-
2009.01259 - 267 (9 pages)
- 0
GEV분포는 세계 여러 나라에서 홍수와 극한강우 등의 빈도분포로 널리 활용되고 있다. L-모멘트법은 GEV분포의 매개변수 추정을 위해 일반적으로 사용되고 있는 추정법이다. 본 연구에서는 Monte Carlo 실험을 이용하여 GEV분포를 따르는 서로 다른 두 지점의 자료의 교차상관계수를 이용하여 L-모멘트 추정값인 L-변동계수와 L-왜도계수들 간의 교차상관계수를 Simple Power 함수를 이용하여 유도하였다. 실험과정에서 생성된 비현실적이며 실험결과에 큰 영향을 미치는 음수값들을 배재한 GEV+분포를 이용하였다. 결과로, Simple Power 함수가 두지점간 자료의 교차상관과 L-모멘트 추정값들간의 교차상관 계수의 관계를 잘 모사하고 있음을 확인하였다. 다양한 GEV 분포의 매개변수 조합에 대한 Simple Power 함수의 매개변수 추정값과 정확성은 표로 제시하였다. 또한 위 연구결과를 활용할 수 있는 Generalised Least Square(GLS) 지역회귀 기법에 대해 설명하였다. 따라서 본 연구에서 도출된 관계식은 향후 GLS 회귀식을 이용한 GEV 분포의 지역 매개변수를 추정하는데 있어 L-모멘트 추정값들간의 정확한 교차상관관계를 제시할 수 있을 것으로 기대한다.
Generalized Extreme Value (GEV) distribution is recommended for flood frequency and extreme rainfall distribution in many country. L-moment method is the most common estimation procedure for the GEV distribution. In this study, the relationships between the cross-site correlations between extreme events and the cross-correlation of estimators of L-moment ratios (L-moment Coefficient of Variation (L-CV) and L-moment Coefficient of Skewness (L-CS)) for data generated from GEV distribution were derived by Monte Carlo simulation. Those relationships were fit to the simple power function. In this Monte Carlo simulation, GEV+ distribution were employed wherein unrealistic negative values were excluded. The simple power models provide accurate description of the relationships between cross-correlation of data and cross-correlation of L-moment ratios. Estimated parameters and accuracies of the power functions were reported for different GEV distribution parameters combinations. Moreover, this study provided a description about regional regression approach using Generalized Least Square (GLS) regression method which require the cross-site correlation among L-moment estimators. The relationships derived in this study allow regional GLS regression analyses of both L-CV and L-CS estimators that correctly incorporate the cross-correlation among GEV L-moment estimators.
(0)
(0)