상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
국가지식-학술정보

블로고스피어에서 주제에 관한 의견을 찾는 융합적 의견탐지방법

Fusion Approach to Targeted Opinion Detection in Blogosphere

  • 0
커버이미지 없음

이 논문은 여러가지 자료를 결합해 어떤 주제에 관한 의견이 실려있는 블로그를 찾는 융합적 의견탐지방법을 소개한다. 주제에 관한 의견이 담긴 블로그를 찾기위해 이 연구는 기존의 IR 방법으로 주제에 관한 블로그를 검색한 후 여러가지 의견탐지 방법을 합산한 의견점수로 검색결과의 순위를 조정하는 방법을 쓴다. 의견탐지 모듈의 주요 구성 요소는 의견이 실려있는 블로그에 자주 나오는 단어들을 활용한 고빈도 모듈, 강한 감정을 표현하는 희귀 한 용어들을 (e.g., "sooo good") 활용한 저빈도 모듈, "I"와 "you"에 묶인 n-gram을 (e.g., I believe, You will love) 활용한 IU모듈, 윌슨의 주관 용어 목록을 바탕으로 한 윌슨의 어휘모듈, 그리고 소수의 의견 약어를 (e.g., imho) 이용한 의견 약어 모듈들 이다. 본 연구의 결과는 여러 가지 방법을 융합하는 것이 의견 검출 성능을 향상시키는데 효과적이 다는 것을 보여주었다.

This paper presents a fusion approach to sentiment detection that combines multiple sources of evidence to retrieve blogs that contain opinions on a specific topic. Our approach to finding opinionated blogs on topic consists of first applying traditional information retrieval methods to retrieve blogs on a given topic and then boosting the ranks of opinionated blogs based on the opinion scores computed by multiple sentiment detection methods. Our sentiment detection strategy, whose central idea is to rely on a variety of complementary evidences rather than trying to optimize the utilization of a single source of evidence, includes High Frequency module, which identifies opinions based on the frequency of opinion terms (i.e., terms that occur frequently in opinionated documents), Low Frequency module, which makes use of uncommon/rare terms (e.g., "sooo good") that express strong sentiments, IU Module, which leverages n-grams with IU (I and you) anchor terms (e.g., I believe, You will love), Wilson's lexicon module, which uses a collection-independent opinion lexicon constructed from Wilson's subjectivity terms, and Opinion Acronym module, which utilizes a small set of opinion acronyms (e.g., imho). The results of our study show that combining multiple sources of opinion evidence is an effective method for improving opinion detection performance.

(0)

(0)

로딩중