이중 배경 모델을 이용한 급격한 조명 변화에서의 전경 객체 검출
Detecting Foreground Objects Under Sudden Illumination Change Using Double Background Models
- 한국방송·미디어공학회
- Journal of Broadcast Engineering
- Vol.21 No.2
-
2016.01268 - 271 (4 pages)
- 0
배경 모델과 배경 차분화로 구성되어 있는 전경객체 추출은 다양한 컴퓨터 비젼 응용에서 중요한 기능이다. 조명 변화를 고려하지 않은 기존 방법들은 급격한 조명 변화에서는 성능이 저하된다. 본 레터에서는 이 문제를 해결할 수 있는 조명 변화에 강인한 배경 모델링 방법을 제안한다. 제안 방법은 다른 적응률을 가진 두 개의 배경 모델을 사용함으로써 조명 조건에 신속하게 적응할 수 있다. 본 논문의 제안 방법은 non-parametric 기법으로서 실험에서는 기존 non-parametric 기법들보다 우수한 성능 및 낮은 복잡도를 보여줌을 증명하였다.
In video sequences, foreground object detection being composed of a background model and a background subtraction is an important part of diverse computer vision applications. However, object detection might fail in sudden illumination changes. In this letter, an illumination-robust background detection is proposed to address this problem. The method can provide quick adaption to current illumination condition using two background models with different adaption rates. Since the proposed method is a non-parametric approach, experimental results show that the proposed algorithm outperforms several state-of-art non-parametric approaches and provides low computational cost.
(0)
(0)