국가지식-학술정보
ON THE DIOPHANTINE EQUATION (an)<sup>x</sup> + (bn)<sup>y</sup> = (cn)<sup>z</sup>
- 대한수학회
- Bulletin of the Korean Mathematical Society
- Vol.52 No.4
-
2015.011133 - 1138 (6 pages)
- 0
커버이미지 없음
In 1956, $Je{\acute{s}}manowicz$ conjectured that, for any positive integer n and any primitive Pythagorean triple (a, b, c) with $a^2+b^2=c^2$, the equation $(an)^x+(bn)^y=(cn)^z$ has the unique solution (x, y, z) = (2, 2, 2). In this paper, under some conditions, we prove the conjecture for the primitive Pythagorean triples $(a,\;b,\;c)=(4k^2-1,\;4k,\;4k^2+1)$.
(0)
(0)