정약용(丁若鏞)의 산서(算書) 구고원류(勾股源流)의 다항식(多項式)의 수학적(數學的) 구조(構造)
Mathematical Structures of Polynomials in Jeong Yag-yong's Gugo Wonlyu
- 한국수학사학회
- Journal for History of Mathematics
- Vol.29 No.5
-
2016.01257 - 266 (10 pages)
- 0
This paper is a sequel to our paper [3]. Although polynomials in the tianyuanshu induce perfectly the algebraic structure of polynomials, the tianyuan(天元) is always chosen by a specific unknown in a given problem, it can't carry out the role of the indeterminate in ordinary polynomials. Further, taking the indeterminate as a variable, one can study mathematical structures of polynomials via those of polynomial functions. Thus the theory of polynomials in East Asian mathematics could not be completely materialized. In the previous paper [3], we show that Jeong Yag-yong disclosed in his Gugo Wonlyu(勾股源流) the mathematical structures of Pythagorean polynomials, namely polynomials p(a, b, c) where a, b, c are the three sides gou(勾), gu(股), xian(弦) of a right triangle, respectively. In this paper, we show that Jeong obtained his results through his recognizing Pythagorean polynomials as polynomial functions of three variables a, b, c.
(0)
(0)