상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
국가지식-학술정보

HILBERT FUNCTIONS OF STANDARD k-ALGEBRAS DEFINED BY SKEW-SYMMETRIZABLE MATRICES

HILBERT FUNCTIONS OF STANDARD k-ALGEBRAS DEFINED BY SKEW-SYMMETRIZABLE MATRICES

  • 0
커버이미지 없음

Kang and Ko introduced a skew-symmetrizable matrix to describe a structure theorem for complete intersections of grade 4. Let $R=k[w_0,\;w_1,\;w_2,\;{\ldots},\;w_m]$ be the polynomial ring over an algebraically closed field k with indetermiantes $w_l$ and deg $w_l=1$, and $I_i$ a homogeneous perfect ideal of grade 3 with type $t_i$ defined by a skew-symmetrizable matrix $G_i(1{\leq}t_i{\leq}4)$. We show that for m = 2 the Hilbert function of the zero dimensional standard k-algebra $R/I_i$ is determined by CI-sequences and a Gorenstein sequence. As an application of this result we show that for i = 1, 2, 3 and for m = 3 a Gorenstein sequence $h(R/H_i)=(1,\;4,\;h_2,\;{\ldots},\;h_s)$ is unimodal, where $H_i$ is the sum of homogeneous perfect ideals $I_i$ and $J_i$ which are geometrically linked by a homogeneous regular sequence z in $I_i{\cap}J_i$.

(0)

(0)

로딩중