ON DISCONTINUOUS ELLIPTIC PROBLEMS INVOLVING THE FRACTIONAL p-LAPLACIAN IN ℝ<sup>N</sup>
- 대한수학회
- Bulletin of the Korean Mathematical Society
- Vol.55 No.6
-
2018.011869 - 1889 (21 pages)
- 0
We are concerned with the following fractional p-Laplacian inclusion: $$(-{\Delta})^s_pu+V(x){\mid}u{\mid}^{p-2}u{\in}{\lambda}[{\underline{f}}(x,u(x)),\;{\bar{f}}(s,u(x))]$$ in ${\mathbb{R}}^N$, where $(-{\Delta})^s_p$ is the fractional p-Laplacian operator, 0 < s < 1 < p < $+{\infty}$, sp < N, and $f:{\mathbb{R}}^N{\times}{\mathbb{R}}{\rightarrow}{\mathbb{R}}$ is measurable with respect to each variable separately. We show that our problem with the discontinuous nonlinearity f admits at least one or two nontrivial weak solutions. In order to do this, the main tool is the Berkovits-Tienari degree theory for weakly upper semicontinuous set-valued operators. In addition, our main assertions continue to hold when $(-{\Delta})^s_pu$ is replaced by any non-local integro-differential operator.
(0)
(0)